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Abstract

Viscoelastic materials can be used to design efficient damping treatments. The design of well-damped structures typically

requires significant numerical optimizations which rely on proper material characteristics. The present study was motivated

by applications where an initially flat viscoelastic sandwich is press formed. Constitutive laws, that gave good correlation

for the flat plate, led to poor correlation in bent configurations. It is well known that the properties significantly depend on

frequency, temperature but also on other environmental factors such as static prestress. None of the classical techniques

being suited to the determination of static prestress effects, a new test rig allowing dynamic measurement of complex shear

modulus of a thin film under significant static loading was thus needed. The design and experimental validation of this rig

are presented, and some results on the characterization of frequency–temperature–prestress effects in a sandwich plate and

their representation using the superposition hypothesis are discussed.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The use of constrained layer viscoelastic treatments is a well-established procedure to enhance damping in
structures [1–3]. The transmission of dynamic shear loads through the viscoelastic material generates energy
dissipation in the form of heat. The design of well-damped structures typically requires significant numerical
optimizations [4,5] which rely on proper material characteristics.

The present study was motivated by applications, where an initially flat viscoelastic sandwich [6] is press
formed. Constitutive laws, that gave good correlation for the flat plate, led to poor correlation in bent
configurations. It is well known that the properties significantly depend on frequency, temperature and other
environmental factors such as static prestress.

The damping properties can be determined experimentally using direct and indirect techniques. These tests
are based on approaches which are relevant on different frequency ranges:
�
 classical beam tests (indirect measurements producing modal damping ratio) [7];

�
 dynamic shear and torsional rheology (10�5–102 Hz) [8];

�
 ultrasonic spectrometer (up to several MHz) [9].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The most common indirect measurements use modal damping ratios of classical composite beam systems
(homogeneous, Oberst [7], modified Oberst, sandwich tests). By studying the various resonances of the

damped beam, the effect of frequency on the properties of the material can be established.

A significant number of measurement points can be examined by changing the beam dimension and
temperature. A seminal contribution to the analysis of damping films through the shear tests of three-layer
beams has been realized as early as in 1959 by Ross, Ungar and Kerwin (RUK) [10]. The analytical
formulation RUK relates the modal damping ratio and the complex modulus properties.

Direct techniques correspond to excitation in extension, torsion or shear of polymer samples where the
dynamic response is obtained at all excitation frequencies, leading directly to the complex modulus. These are
known as direct complex stiffness (DCS) test systems [11] and this is the approach retained here.

Since none of the classical techniques is suited to the determination of static prestress effects on a wide
physical frequency range starting at low frequencies, a new test rig allowing dynamic measurement of complex
shear modulus of a thin film under significant static loading was needed to understand the source of the
difficulties with bent plates. The present study discusses the design and experimental validation of this rig, and
some results on the characterization of a particular material.

Section 2 details the dynamic rig to measure directly the complex shear stiffness of viscoelastic films, its
functional principle, dimensioning and experimental realization. The rig is effective over a relatively narrow
frequency band, but by performing measurements at different temperatures and using the frequency–tempera-
ture superposition hypothesis [2], the frequency domain can be extended to a wide range. It is also proposed to
use the superposition hypothesis to represent prestrain effects, investigating the validity of this approach in a
substantially sheared material. Section 3 deals with the experimental data processing and the construction of
viscoelastic tabulated laws in the frequency range 1–2000Hz, for temperatures of 0–50 �C and what is new, for
prestrain up to 3 applied to a viscoelastic sandwich plate with polymer form core provided by Arcelor [6].

2. Test rig design and validation

Section 2.1 presents the rig and the test facility. Section 2.2 details the simplified modeling as a two mass
system connected by a viscoelastic spring (shear layer) in parallel with an elastic spring representing the
prestress beam. This functional model will be used to treat the experimental data. Section 2.3 presents the
finite element (FE) model used to design the geometry of the rig in order to isolate the shear mode from other
perturbing modes on the widest frequency band. Section 2.4 finally deals with the evaluation of the frequency/
storage modulus/loss factor range where the mechanical properties of damping sandwich plates are predicted
with a weak error ratio.

2.1. Rig construction

One aims at measuring the material properties of the viscoelastic core of a steel/polymer/steel sandwich
plate through a direct solicitation in shear. The tested sandwich plates have been kindly provided by Arcelor
[6] and are labeled BI2F through this study. This sandwich plate model is available under the commercial
denomination Usiconfort in the automotive industry and Sollight AC in the building industry. The BI2F
sample is made of a 0.04mm polymer viscoelastic core and two 0.5mm steel layers. To obtain an uniform
shear stress-state in the viscoelastic polymer core of the steel–polymer–steel sandwich plate, the steel stiff
layers are selectively cut in order to isolate a test zone in the viscoelastic core: the top layer is designed to
translate, whereas the bottom layer will be clamped (Fig. 1).

The test rig is made up with additional structural elements (moving part, static frame) shown in Fig. 2, and
realized in standard steel for its high rigidity and milling ability. The milled steel–polymer–steel sandwich plate is
glued and screwed to the static frame. The moving part consists of two elements fixed to the sandwich top layer
and of an aperture so that a transverse beam can stiffen the connecting of the bottom layer to the static frame.

To induce prestrain in the viscoelastic test zone, a prestress beam whose position is adjusted by set screws
has to be added to the rig (Fig. 2). A Hall effect position sensor Kaman KD 2300 is set on a flask at the back of
the rig in order to measure the static displacement induced by the prestress beam and the dynamic relative
displacement of the moving part. A force sensor Brüel–Kjaer BK 8200 measures the dynamic force induced by
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Fig. 1. Milled steel/polymer/steel sandwich plate layers—viscoelastic test zone.

Fig. 2. Complete test rigþmilled viscoelastic plates and moving part (left); prestress beam mounted on the test rig front (right).
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an electrodynamic shaker LDS V101 through a piano-wire at the moving part entry and the whole rig is hung
at his corners. To study the influence of the temperature on the material properties, the test rig is put in an
isothermal chamber with temperature control.

In the assumption of a perfect rigidity of the moving part and of the rig other elements in the measuring
frequency range (Section 2.3 discusses the importance of this assumption), these measures exactly correspond
to the shear of the viscoelastic test zone. All measurements are done using LMS measuring system CadaX,
Scadas II [12], connected to a HP workstation and their analysis is proceeded under Matlab/SDT [13].

Each measurement is performed with a random excitation between 0 and 2048Hz. One obtains the relative
displacement to force frequency response function (FRF) shown in Fig. 3 for two excitation force levels at a
temperature of 23 �C in presence of the prestress beam but with no prestrain. The comparable FRF shapes
means that there is a very good nonlinearity level of the measure. A good reproducibility has been also
achieved. One can mainly observe the shear mode resonance around 1000Hz, but also other perturbing
modes: perturbations at low frequencies which correspond to suspension modes and a mode at 1400Hz that
will be explained in Section 2.3.

2.2. Functional principle

This section details the simplified analytical model used to determine the complex modulus from actual
measured FRF.

For a test zone of surface A and a dynamic shear force Fs induced in the top layer, the shear stress s13 in the
viscoelastic core is equal to F s=A. The associated strain e13 can be approximated by

e13 ¼
1

2

qu1

qx3
þ

qu3

qx1

� �
’

1

2

qu1

qx3
’

1

2

dr

h
, (1)
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since one assumes that there is no thickness variation of the viscoelastic core (i.e. qu3=qx1 ’ 0), the viscoelastic
test zone being indeed thin compared with its other dimensions. dr and h, respectively, stand for the shear
displacement (induced by force F s) and the thickness of the viscoelastic test zone. The complex shear modulus
G� is thus given by

G�ðo;T ; e0Þ ¼
1

2

s13
e13
¼

h

A

F sðoÞ
drðo;T ; e0Þ

, (2)

which is proportional to the force to displacement FRF Fs=dr, at frequency o, temperature T and prestrain
e0 ¼ d0=h, where d0 stands for the static shear displacement. The Fs=dr FRF is however not directly accessible,
so that it will be obtained using a functional representation of the rig.

One considers the functional model shown in Fig. 4. m stands for the moving part mass fixed to the test zone
top layer and M for the static frame mass to which the bottom layer is clamped; Kp represents the stiffness of
the prestress beam, Ks the rig suspension stiffness; the complex frequency–temperature–prestrain dependent
stiffness Kvðo;T ; e0Þ ¼ G�ðo;T ; e0ÞA=h models the viscoelastic test zone. The corresponding matrix system can
be written as

ðKp þ KvÞ
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Assuming Ks to be small, and given measurements of external force F e and relative displacement d1 � d2, a
straightforward manipulation of Eq. (3) leads to

FsðoÞ
d1ðoÞ � d2ðoÞ

þ Kp ¼ Kvðo;T ; e0Þ þ Kp ¼ G�ðo;T ; e0Þ
A

h
þ Kp

¼
M

M þm

F eðoÞ
d1ðoÞ � d2ðoÞ

þmo2

� �
. ð4Þ

This expression will be used to predict G� from experimental FRF measurements over the widest possible
frequency range for various temperatures and prestrains.

2.3. Design of test rig using FE modeling

As explained in the previous section, the test rig principle is based on an unique shear mode operation but in
reality there are other perturbing modes already illustrated by Fig. 3. A FE model will predict the dynamic
behavior, and help to design the test rig geometry so as to obtain the widest frequency range with no mode
excited other than the shear mode.

Fig. 5 presents the FE model of the test rig: 7024 solid elements are used for the static frame, moving part,
support, flask, glue, layers and viscoelastic core; 116 beam elements for the screws, excitation stinger and
prestress beam; 1 mass element for the shaker. The different material properties are summarized in Table 1.

A nominal elastic modulus E0 ¼ 50MPa has been chosen for the viscoelastic core. Fig. 6 shows four
selected mode shapes of the model hung up at its corner with four springs of stiffness K0 ¼ 106 N=m.

The functional test rig mode (shear mode) occurs at 1877Hz (mode 14). Other modes correspond to rocking
of the moving part around the viscoelastic test zone in directions ðOzÞ and ðOxÞ (modes 8 and 10) and to its
first bending mode (mode 12). These three modes will perturb the FRF evaluation since they also stress the
viscoelastic test zone. The rocking modes are relatively low frequency and should thus not perturb
measurements too much. The bending mode is more critical. The rig can only be used if the shear mode
resonance is well separated from the bending mode.

We can now test the assumption of a rigid moving part during the shear mode (mode 14). Table 2 presents
the resonant frequency variations of the modes when changing the viscoelastic film stiffness: the higher the
stiffness, the higher the frequencies. The last line shows the evaluation of the shear resonant frequency using
the equivalent model of Eq. (3): there is a growing difference between the functional and the FE shear
frequency evaluations when increasing the film stiffness. This is explained by the growing flexibility of the
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Fig. 5. Test rig FE model, half-section.
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Table 1

Test rig mechanical properties

Steel E ¼ 210GPa n ¼ 0:29 r ¼ 7800kg/m3

Glue E ¼ 1GPa n ¼ 0:49 r ¼ 1100kg/m3

Polymer (core) E0 ¼ 50MPa n ¼ 0:49 r ¼ 1200kg/m3

Screw f ¼ 7mm Steel

Prestress beam A ¼ 2mm� 26mm Steel

Shaker stinger f ¼ 1mm Steel

Shaker m ¼ 0:6 kg

Fig. 6. Normal modes for ReðG�Þ=G0 ¼ 1 (without prestress beam).

Table 2

Resonance frequencies—f 0 in Hz vs. the value of ReðG�Þ=G0

ReðG�Þ=G0 0.02 0.05 0.2 1 2

Rocking mode ðOzÞ 35 55 110 239 328

Rocking mode ðOxÞ 144 215 350 481 518

Bending mode 287 445 832 1441 1644

Shear mode ðOyÞ 292 459 902 1877 2479

Functional model 292 461 923 2063 2918
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moving part: the higher the shear modulus, the greater the deformation of the moving part, so that the
predicted resonant frequency is weaker compared to the functional model.

Since the aim is to produce prestrain in the viscoelastic core, it is also necessary to study the influence of
adding a prestress beam to the FE model. The bending mode (mode 12 of Fig. 6) is moved to a higher
frequency outside the band of interest so that it no longer perturbs the results significantly. But the prestress
beam presence increases the ðOxÞ rocking mode frequency from 416 to 1481Hz and this mode will perturb the
prestrain measurements since it is in the frequency range of interest. Fig. 7 shows a comparison of the ðOxÞ

rocking and shear modes for the FE models with (left) and without (right) prestress beam. The prestress beam
has a very slight influence on the shear mode frequency, increasing it by only 5Hz.
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The displacement to force FRFs have been evaluated over the frequency range 0–2048Hz for the prestress
beam configuration using a real viscoelastic constitutive law at various temperatures. A reduced computation
with error control [14] enables to compute many frequencies and temperatures with a reasonable computing
time. Fig. 8 shows how changes occur to the shear resonant frequency and FRF phase when varying
temperature; the ðOxÞ rocking mode around 1400Hz appears to have a large influence at every temperature.
Comparison of the corresponding experimental FRF measured at 23 �C (Fig. 3) with the FE FRF allows to
understand that the perturbing mode at 1400Hz corresponds to the predicted ðOxÞ rocking mode of Fig. 7
(mode 13).

2.4. Detailed analysis

The following paragraphs deal with the evaluation of the frequency/storage modulus/loss factor range for
which the mechanical properties of damping sandwich plates (with the same geometrical characteristics as the
BI2F plate) can be measured with small relative errors (less than 15%).

The validity of the stress–strain uniformity assumption has first to be studied. To do so, a static
computation is performed on the complete rig with a detailed mesh of the test zone. Fig. 9 shows the strain
Fig. 7. Normal modes with (left) and without (right) prestress beam, half-section.
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energy density in the test zone. A non-uniform repartition of strain energy can be observed, the differences
being mainly located at the boundaries where the variation is up to 30%. But the more detailed the test zone
mesh, the wider the stress–strain uniformity and the bigger the variation: these are border effects as explained
in Ref. [15]. One can thus assume the validity of the stress–strain uniformity assumption and apply Eq. (4) to
the FRFs in order to get the complex shear modulus G�.

One calls the real part G0ðoÞ ¼ ReðG�ðoÞÞ the storage modulus; the loss factor is the ratio of imaginary part
to the real part, ZðoÞ ¼ ImðG�ðoÞÞ=ReðG�ðoÞÞ ¼ G00=G0. By applying Eq. (4) to the model, one gets the
frequency/storage modulus/loss factor range where the properties are well evaluated. The estimated storage
modulus ReðGeÞ and loss factor Ze are compared to the nominal values G0 and Z initially put in the FE model.
Their variation is illustrated by an error expressed in percentage form: 100 � ½ReðGeÞ=ReðG�Þ � 1� for the
storage modulus and 100 � ½Ze=Z� 1� for the loss factor. This variation comes from the fact that the FE
computation takes into account stiffness of the other parts of the test rig. This measurement validity domain
can be interpreted as an error map which may be used to slightly improve the experimental identification of G0

and Z.
Fig. 10 shows the estimated storage modulus for various nominal moduli G0 2 [105–108] Pa for Z ¼ 0:01

(left) and Z ¼ 0:7 (right). The storage moduli are underestimated, with an error that increases as the real part
of G0 is increased, or as the frequency decreases. The error does not go beyond �15% over 580–1412Hz.

A similar analysis for various loss factors Z 2 ½0� 1� is illustrated in Fig. 11 for two nominal moduli G ¼ G0

(left) and G ¼ G0=10 (right). The error does not pass �7% over 580–1412Hz and hardly depends on Z.
3. Experimental data processing

3.1. Complex modulus measurements

Figs. 12 and 13 present the displacement to force FRFs at various temperatures 0, 5, 10, 15, 17, 23, 25, 35,
50 �C without prestress beam, and for prestrains 0; 0:62; 1:36; 1:57; 1:76; 2:34 at a temperature of 23 �C. These
FRFs have been smoothed using a sliding average.

One can directly estimate the complex shear modulus G� from the measurements of relative displacement to
force FRFs using Eq. (4). To do this, one needs to know the experimental values of Kp, M and m. Weighing
provides the value of ðM þmÞ. Transforming the relative displacement to force FRF to its equivalent
acceleration to force FRF supplies the inverse of m: its high frequency asymptote corresponds to the inertia of
the moving part mass m. As for Kp, the same FRF is measured on the rig with a milled sandwich plate with no
viscoelastic core. The real stiffness of the prestress beam Kp is then directly measured at o ¼ 0 using Eq. (4),
since Kv ¼ 0 and M=ðM þmÞ is known.
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Eq. (4) is then applied to the two FRFs to get G0 and Z as represented in Figs. 14 and 15. One can see the
strong variation of both G0 and Z over the range 0–2048Hz for temperatures of 0–50 �C and prestrains up to
2.34 (3 is the prestrain limit before delamination of the core).

3.2. Principles of reduced frequency representations

The basic assumption of linear viscoelasticity [16] is the existence of a relaxation function such that the
stress sðtÞ is obtained as a convolution with the strain history eðtÞ. Using the Fourier transform, one obtains an
equivalent representation where the material is now characterized by the Complex Modulus L (transform of
the relaxation function).

For all practical purposes, one can thus, in the frequency domain, deal with viscoelasticity as a special case
of elasticity where the material properties are complex. In practice, it is very difficult to generate combined
dynamic loads so that one only tests one particular component of the viscoelastic tensor L. Compression tests
give the complex Young’s modulus E� and shear tests the complex shear modulus G�.

It is however easily tested that the complex modulus depends significantly on environmental factors
(temperature, prestrain, etc.). Measurements of complex stiffness over a fixed frequency band are made at
various temperatures in the transition region. It has been experimentally observed that a continuous curve for
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the storage modulus G0 and loss factor Z can be obtained by translating, with respect to frequency, moduli
obtained at different temperatures. In other words, G� is a function of oaðTÞ (where aðTÞ is called a shift
function) rather than o and T separately. This property is called the frequency– temperature superposition

hypothesis [2]. The continuous G0 and Z functions are called master curves. The product oaðTÞ is called the
temperature-reduced frequency.

These translations are completely defined by the values of the temperature shift function aT ¼ aðTÞ at the
different measured temperatures T. Possible parametric representations, based on the physical dissipation
processes, are discussed in Ref. [17] and can be directly tested on the measured data obtained at various
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temperatures to obtain a single curve over the reduced frequency range. A simple, thermally activated process
will follow an Arrhenius behavior and will adequately describe aT up to the transition temperature (where the
peak of the loss factor occurs):

log aT ¼
Ea

R

1

T
�

1

T0

� �
, (5)

where R ¼ 8:314� 10�3 kJmol�1 K�1, Ea is the mean activation energy and T0 the reference temperature.
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The Williams–Landel–Ferry (WLF) [18] equation is appropriate beyond the transition temperature:

log aT ¼ �
C0

1ðT � T0Þ

C0
2 þ T � T0

. (6)

The viscoelastic coefficients C0
1 and C0

2 depend on the material, and their values are functions of the reference
temperature T0.

In Section 3.3 we will verify that the superposition hypothesis is indeed an useful technique to extend the
frequency range of validity to various temperatures. The extension of this hypothesis to prestrain effects will
be addressed in Section 3.4.
3.3. Validation for temperature effects

The ability to build master curves from temperature/frequency maps of Fig. 14 is discussed here. One
manually translates, in frequency, the 400–2000Hz isothermal curves in order to obtain one single sigmoidal
continuous curve for G0 in the temperature-reduced frequency range (Fig. 16 left). The same manual shift
function is applied to the loss factor Z (Fig. 16 right). One observes that it defines a convex shaped curve and a
rather good superposition of the low temperature (below 23 �C) segments. Beyond 23 �C, at temperatures 25,
35 and 50 �C, the master curve is however not perfectly continuous: the curves are not strictly tangent when
they overlap. The applicability of the temperature superposition hypothesis to measurements over the whole
temperature range is discussed below.

Fig. 17 shows the resulting temperature shift factors with their variation zone delimited by the minimum
and maximum values. The measured values are compared with two formulations of the WLF equations (6).
These formulations are defined with the classical values C0

1 ¼ 17:4 and C0
2 ¼ 51:6 �C proposed in Ref. [18], and

also for C0
1 and C0

2 values identified from the chosen manual shift factors. Differences exist but the global
shape is in agreement with the analytic formulation. As concerns the minimum and maximum values, they
have been obtained by modifying the reference physical frequency range according to two cases. Using the
same frequency response function measurements (that have been shown to be reproducible in Section 2.1), it
was decided to change the initial physical frequency range 400–2000 to 450–925Hz and then to 1500–1970Hz,
in order to avoid the 1400Hz ðOxÞ rocking mode. This resonance is clearly visible in Fig. 16: the curves present
a peak at low temperatures and changes in the tangency slope at high temperatures for both the storage
modulus and the loss factor. It appears that the manual shift factors needed to obtain good continuity of the
master curve vary significantly, particularly at temperatures at temperatures 23–25, 35 and 50 �C. This is in
100 102

1

2

3

4

5

6

7

8

Reduced frequency

R
e(

G
) 

M
P

a

0
5

10

15

17

2325

35
50

100 102

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reduced frequency

Lo
ss

 fa
ct

or

0
5

10

15
17

23

25

35

50

Fig. 16. Storage modulus (left) and loss factor (right) against temperature-reduced frequency oaT . T 2 ½0; 5; 10; 15; 17; 23; 25; 35; 50��C,
e0 ¼ 0.



ARTICLE IN PRESS

0 10 20 30 40 50
10-4

10-3

10-2

10-1

100

T
em

pe
ra

tu
re

 s
hi

ft 
fa

ct
or

 L
og

 (
α T

)

Temperature (°C)

Fig. 17. Temperature shift factor aT against temperature T for BI2F. ��Manual shift þ variation zone of manual shifts, and two typical

WLF equations: – �17:4DT=ð51:6þ DTÞ, � � � �10:5DT=ð25þ DTÞ. T 2 0–50 �C.

G. Kergourlay et al. / Journal of Sound and Vibration 297 (2006) 391–407 403
accordance with the observation already made in Fig. 16: the superposition hypothesis can be criticized at
those temperatures that correspond to the loss peak for the BI2F sample. The fact that uncertainty exists
concerning the choice of the manual shift factors could have been overcome by reducing the temperature
interval to provide more data in this region. Unfortunately, not many points could be measured at high
(as well as at low) temperatures since it was difficult to ensure a constant temperature in the isothermal
chamber during the measurements. Keeping in mind the uncertainty that exists concerning the loss peak
region, it was finally considered quiet reasonable to apply the frequency–temperature superposition hypothesis
to these measurements.

Finally, the measurements are smoothed and undersampled to produce a table against reduced frequency.
This has been applied to the experimental master curve in temperature-reduced frequency: Fig. 18 is the
undersampled tabulated law of Fig. 16. These tables, with proper extrapolation procedures, can be used to
predict the complex shear modulus at arbitrary frequencies and temperatures (as shown in Fig. 18) for FE
analysis of models containing this material.

For this material, cross validations have been performed by predicting the response of a square sandwich
plate at various temperatures. Comparison of experimental acceleration upon force FRFs to predictions using
the reduced-temperature tabulated constitutive law of BI2F shows very good results [19]. It shows the
applicability of the superposition hypothesis to temperature effects and the use of tabulated laws in the FE
analysis.

3.4. Applicability to prestrain effects

To test the applicability of the superposition hypothesis to frequency–prestrain effects, the same procedure
is applied to the measurements at various prestrains: Fig. 19 (obtained from the prestrain/frequency map of
Fig. 15) and Fig. 20 present the results at two temperatures 23 and 35 �C. Following the definition of the
temperature-reduced frequency introduced in Section 3.2, a reduced frequency called the prestrain-reduced
frequency has been defined as

oað�0Þ ¼ oa�0 , (7)

where a�0 is the prestrain shift factor.
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A manual prestrain shift factor has been applied to the 150–1700Hz prestrained curves of G0 in
order to obtain one continuous curve in the prestrain-reduced frequency range. The same manual
shift function is applied to the loss factor Z (Fig. 16 right). One observes that it globally defines an
increasing curve for the modulus (by nearly a factor of 2) and a decreasing curve for the loss factor. This is the
expected behavior described by many authors. But the tangency of the curves when they overlap is not
realized.

The low and high parts of each data do not superimpose and a peak is visible, particularly in the loss
factor estimation of each prestrained curve. The modal resonance associated to this peak is quite
visible in Figs. 3 and 13 and was seen to be the ðOxÞ rocking mode according to the FE analysis. The
greater the prestrain, the greater the degree of misfit in the master curve: the ðOxÞ rocking mode is
more and more visible and the tangency of the curves where they overlap more and more different. This is
particularly observable at temperature 23 �C for the loss factor (Fig. 19). At temperature 35 �C (Fig. 20),
the loss factors of each prestrain segment are clearly not tangent with one another but the fact that the
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tangency of the curves is more and more different when increasing the prestrain is not so obvious as at 23 �C.
This difference of behavior is certainly due to the fact that the loss peak is reached in between
these two temperatures and that the slope of the loss factor changes and certainly creates unstability
(cf. Fig. 18).

This is clearly a limitation of the way the rig has been conceived. The ðOxÞ rocking mode has indeed been
translated in the frequency range of interest (from 400 to 1400Hz, Section 2.3) in presence of the prestress
beam.

The conclusion is that the frequency–prestrain superposition hypothesis is not verified. The loaded damping
designs do not damp as expected: the low and high parts of each data do not superimpose, consequently the
loss factor does not collapse into one single curve. Examination of the figures rather suggests that a second
translation along the vertical axe should be required to collapse the data. Off the ðOxÞ rocking mode that
could be erased, prestrain is certainly accompanied by many nonlinear phenomenons that cannot be
quantified and explained at this stage.

Fig. 21 however illustrates that a given master curve may not do so bad a job at interpolating behavior for
various prestrains. It suggests that the prestrain curves could be used in physical frequencies to predict the
material response to a dynamic load in presence of press forming.
4. Conclusion

A dynamic test rig has been designed and built to measure directly the complex shear stiffness of
homogeneous viscoelastic films in steel–polymer–steel sandwich plates. The novelty of this test system is its
ability to induce static prestrain in the viscoelastic layer.

The additional elements needed to insert the prestress beam lead to a resonant rig that has been
characterized through a FE analysis. The main resonances observed in the experimental measured FRFs have
been identified through the FE computation. The FE rig analysis has shown the rig to be capable of studying a
large variety of sandwich plates with a thin viscoelastic core (close to the geometrical characteristics of the
treated sample) over the range 1–2000Hz. The rig allows us to characterize accurately damping films with a
shear modulus up to 108 Pa, whatever the loss factor.

Results for a particular sample in the frequency range 1–2000Hz, prestrain 0–3, at temperatures 0–50 �C
have been shown. After smoothing and undersampling the measured data obtained at various temperatures,
the frequency–temperature superposition hypothesis has been investigated and used to get a temperature-
reduced frequency master curve. This representation leads to a non-parametric description of the complex
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modulus that can be used in FE modeling, in order to predict the dynamic behavior of damped structures
incorporating such viscoelastic films.

The effect of prestress on the damping of this material has been investigated by using the same methodology
with various prestrains. It has shown that the frequency–prestrain superposition hypothesis is not applicable
to the measurements, since the loss factor does not collapse into one single curve. The expected behavior
described by many authors (increasing of the modulus and decreasing of the loss factor with prestrain) has
been observed, but the measurements indicate that the loaded damping designs do not damp as expected.
However, the influence of the prestrain on the complex shear modulus has been quantified for a particular
viscoelastic film. The results provide frequency–prestrain constitutive laws for use in FE models of sandwich
plates, particularly when the sandwich plate is press formed.
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